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Does Thermodynamics Rule Out the Existence of 
Cosmological Singularities? 

M a r c e l o  Schif fer  I 
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Recently, Bekenstein showed that a singularity in the FRW radiation-dominated 
cosmological model is inconsistent with the "entropy bound,"  a new thermo- 
dynamic law he put forward a few years ago. In this paper we generalize his 
results and show that, regardless of model peculiarities, the existence of  cosmo- 
logical singularities is incompatible with thermodynamics. 

1. INTRODUCTION 

The advent of general relativity marks the beginning of modern cos- 
mology. The study of homogeneous and isotropic models allowed science 
to make remarkable predictions concerning the universe we live in, such as 
Hubble's law, the helium abundance, and the cosmic background thermal 
radiation; and to describe early stages of evolution of the universe. Unfortu- 
nately, these models also predict that, as we go back in time, matter energy 
density and pressure increase indefinitely, until a point where the curvature 
blows up is reached--a spacetime singularity. At this point all physical laws 
should break down. 

Of course, one may wonder whether such a behavior is a particularity 
of the models studied, or if it is rather a general disease that afflicts general 
relativity. With such worries in mind, many researchers scrutinized non- 
isotropic (Kasner, 1921; Misner, 1969; Khalatnikov and Lifshitz, 1963; 
Belinsky et al., 1970) looking to circumvent the cosmological singularity. 

Soon it became clear that all efforts toward nonsingular cosmological 
solutions are condemned to fail. Through a set of powerful theorems, 
Penrose and Hawking (Hawking and Ellis, 1980) proved the remarkable 
result that, if matter satisfies very general conditions like the "strong energy 
condition" (essentially, that pressure and energy density are positive) and 
if global causality holds, a singularity in spacetime must follow. 
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Obviously, the cosmological singularity may be avoided through some 
violation of the strong energy condition. This may be accomplished by 
introducing negative energy or pressure in some models. This is the way 
inflationary cosmology works (Guth, 1981). However, this resolution relies 
on a very particular model and does not answer the fundamental question: 
Do the known laws of physics rule out the existence of spacetime singu- 
larities? The widespread belief is that, when a self-consistent theory of 
quantum gravity is available, all these matters will be settled. 

Here we pose the question of whether thermodynamic reasoning has 
some predictive power concerning the existence of the cosmological singu- 
larities allowing us to circumvent the present lack of a microscopic theory 
of gravity. This situation is very akin to the conceptual and experimental 
problems science faced at the end of the previous century concerning the 
blackbody radiation. We recall that the lack of a microscopic description 
of radiation was not an impassable barrier for important predictions-- 
witness Wien's displacement law and the Stefan-Boltzmann law, which 
were obtained solely based on thermodynamic considerations. Before delv- 
ing into this question, let us do a thermodynamic detour. 

The second law of thermodynamics affirms that the entropy of a closed 
system tends to a maximum, without stating how large this could be. On 
the other hand, a common intuitive feeling is that this entropy should be 
limited in terms of the system's size and energy, which is suggested by the 
limited phase space available for such a system. The formal translation of 
this intuitive feeling arose some 10 years ago as Bekenstein (1981a) worked 
out a consistency condition between black hole thermodynamics and 
ordinary statistical physics. He concluded that the condition for the general- 
ized second law (ordinary matter+ B.H.) to hold always is that the entropy 
of any system with largest linear dimension R and proper energy E must 
be limited by 

S /  E <- 27rR/ hc (1) 

The existence of this bound has been corroborated in the realm of quantum 
field theory without interactions (Bekenstein, 1981a, b, 1983; Schiffer and 
Bekenstein, 1989), with interactions (Bekenstein and Guendelman, 1987; 
Schiffer, 1988), of string theory (Bowick et al., 1986), nuclear physics 
(Schiffer et aL, 1990), and also in the presence of strong gravitational fields 
(Sorkin et al., 1981). Moreover, the entropy bound predicts a limit on the 
rate wherein information may be conveyed between an emitter and a 
receiver, and limits the number of families of elementary particles. These 
results are either in agreement with experiment or have been derived by 
other means (Bekenstein, 1982; Bekenstein and Schiffer, 1990). Equation 
(1) is to be regarded as a physical law which supplements the second law. 
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Answering the above question, recently, Bekenstein (1989) applied the 
entropy bound for an observer living in a radiation-dominated Friedman- 
Robertson-Walker model. As discussed by him, due to the fact that any 
observer is causally disconnected from any region beyond his particle 
horizon (P.H.), the cosmological counterpart for a closed system should be 
the spacetime region within the observer's particle horizon. He showed that 
for this "system" the entropy bound is violated as the observer approaches 
the initial singularity. Thus, thermodynamic reasoning has the predictive 
power of ruling out the existence of a singularity in the radiation-dominated 
FRW model. 

The purpose of this paper is to push forward Bekenstein's idea and to 
prove a general, model-independent result showing the inconsistency 
between the existence of a cosmological singularity and thermodynamics. 
For this end, following Belinsky et al. (1970), we expand the metric around 
a spacetime singularity and apply the entropy bound to the particle horizon 
interior defined by this asymptotic expansion. Moreover, we do not specify 
the universe matter content, but solely impose very general restrictions upon 
it, namely we (i) demand pressure and energy density positiveness, (ii) 
forbid causality violation, and (iii) assume the matter entropy density to 
be always bounded from above by that of the corresponding thermal 
radiation. Then we shall conclude that, for any reasonable universe (in the 
sense that matter satisfies the conditions listed above) simultaneous consider- 
ation of general relativity and the entropy bound forbids the existence of 
spacetime singularities ! 

This paper is organized as follows. In Section 2 we parallel the Belinsky 
et al. (1970) expansion of the metric around a spacetime singularity and 
constrain the range of the parameters which govern this metric, imposing 
the above-mentioned conditions on the matter content and assuming the 
three-curvature tensor to be finite. In Section 3, we apply the entropy bound 
to the region inside the observer's particle horizon. In Section 4, we study 
a toy model of matter failing toward the Schwarzschild singularity, showing 
explicitly violation of the entropy bound in the context of black-hole 
singularities. Next, in Section 5, we analyze under which conditions the 
three-curvature may be neglected, and amend our results for circumstances 
where this condition is not fulfilled. In Section 6, we discuss the prospects 
of the present research. 

2. THE METRIC NEAR THE SINGULARITY 

It is widely accepted that near any timelike singularity the line element 
in a synchronous reference system has Belinsky et al. (1970) asymptotic form 

as 2= -dtZ + h,~(x, t) dx~dxj (2) 



422 Schiffer 

with 

hij = a21,1j + b=mjrnj + c2njnj (3) 

Here 1, m, and n are a dreibein basis, which are functions of  the space 
coordinates (for the purpose of  vectorial operations i, m, and n should be 
regarded as vectors in Cartesian coordinates). The group of motions in this 
spacetime satisfy a Lie algebra whose structure constants may be classified 
in terms of three parameters h, /x, and v: 

A = I - V x l ,  / z = m - V x m ,  v = n . V x n  (4) 

with 1. (in x n) = 1. 
As these observers approach the singularity, they get closer to each 

other with an expansion rate 

Ova+ v~ O lnx/h = 0 lnx/h (5) 
O = v  ~ = 

;w Ox ~ Ox ~" Ot 

The second fundamental form is defined as 

whose trace is 

10h~j 
X ' ~ = 2  0--t (6)  

= . , i_  ~t, ij 0h~j 0 ln~/h 
X - , ~ i - 2 , ,  = ( 7 )  

Ot 3 t  

having the straightforward physical interpretation of being the expansion 
rate (5). 

Einstein's equations may be cast in the form (Landau and Lifshitz, 1970) 

0 
R~ = - ~  X - XjX{ = 8 - ( T ~ 1 8 9  (8) 

R o - ~ J - (Xi; i  = 8zrT~ -Xj;i) (9) 

1 0 x/-~x~=aTr(Tj , , - g 6 j T )  (10) 

where 3R~ stands for the three-geometry Ricci tensor. If  rightmost part of 
(8) is semi-positive definite (strong energy condition), it is rather trivial to 
show the inequality (Landau and Lifshitz, 1970) 

0 1>1 
-x-or -3  (11) 

Assuming X to be initially positive at some to, as time decreases, so must 
X- 1, until it vanishes. At this point, 0 diverges corresponding to the formation 
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of  a caustic at some earlier time. This point need not necessarily correspond 
to a physical singularity, and may be fictitious, owing its existence to the 
bad choice of  coordinate system. Here we shall assume this point to be 
singular, and choose the origin of time to coincide with it. This fact, in 
combination with equation (8), implies that h must vanish as one approaches 
the singularity with a power of  t that never exceeds 6 (Landau and Lifshitz, 
1970). Therefore, 

h ~ t 2~ (12) 

1 a l n h  n 
- O < n - - < 3  ( 1 3 )  

X = 2 0 t  t '  

It is convenient to express a = t ~', b = t "2, and c = t %, where ai are arbitrary 
functions of  the coordinates. The corresponding volume element is 

h =/2(%+%+%) (14) 

Comparison of  (12) and (14) tells us that 

~ l ( x )  + ~2(x)  + ~3(x)  = n (15) 

For the purpose of solving Einstein's equations (8)-(10) we evaluate the 
second fundamental form 

d l:lj + b  m,mj + ~- = - " n~nj (16) 
X j  a c 

In the present section we shall assume that, as the singularity is 
approached, matter pressure and energy density diverge while the three- 
dimensional Ricci tensor remains finite. Thus, near the singularity, equation 
(10) reads 

0 i i i 1 i Xj +XXj = -8or(T} -56 j  T) (17) 

where the definition of X [equation (7)] was used�9 
In the particular coordinate system where the spatial part of the energy- 

momentum tensor is diagonal we have 

Tj = -pi6j 

ro~ (18) 

where Pi and p stand for the principal pressures and energy density as 
measured by this observer. In light of (18) the trace of (17) reads 

0 
OtX+X2= 127r(p-/~) (19) 

where 15 stands for the mean pressure p = (pl +p2+P3)/3. Having in mind 
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(13), we obtain for this equation 

p - p = - -  n ( n - 1 )  
12 ~rt 2 

(20) 

On causality grounds, we must have p --- 20, constraining n to be in the interval 

l<n<--3 (21) 

(henceforth the n = 1 case will be excluded from our considerations, since 
it either corresponds to vacuum solutions or to completely stiff matter). 
Next, after inserting (13), (16), and (18), we find for (8) 

( n / f l )  - [ ( a / a )2+  ( b / b ) 2 +  (~/c) ~] = 4r + 320) (22) 

The term in brackets may be reexpressed in terms of  the a~, 

In t 

and 

n ( 4 - n ) - 3 o t  2 
20 - 48.rr t 2 (25) 

Positiveness of local pressure and energy density constrains a, 

n ( a -  ~x2  < n) <_ n2 (26) 
3 

As shown in Figures 1-3, the a 's  lie on the circumference [the circumference 
of solutions (C.S.)] given by the intersection of the plane (15) with the 
sphere of radius Ice[ [represented by the dashed lines in the figures. The 
dashed triangle represents the intersection of this plane with the planes 
a~ = 0).] Obviously, the radius Joe I must be larger than the distance of the 
plane to the center of the sphere, i.e., larger than n/q'3,  

n 2 n ( 4 - n )  
- - - < a ~ -  < (27) 
3 3 

t 

If  the three-curvature is finite at the origin, then, according to (20), the 
right-hand side of (22) behaves exactly as t -2. Thus, close to the singularity, 
the a ' s  are asymptotically time independent. Defining oe(x) -= (~1, a2, ex3), 
we find for equation (22) 

n --OL 2 

(p + 320) = 4~.t 2 (23) 

We may solve (20) and (23) for the 20 and p, obtaining 
n2--Ol. 2 

p -  167rt2 (24) 
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I 

Fig. 1 

demanding n-< 2. Therefore, for any solution 

1 < n -< 2 (28) 

Useful information may be obtained by inspecting these figures, allow- 
ing the classification of three distinct situations: 

Tcz 3 

I'l r t  

J 
r 2 

Fig. 2 
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n 

(11 (12 

Fig. 3 

(i) This circumference circumscribes this triangle. In this case, either 
two components of  a are positive and the third is negative, or two vanish 
and the third is one. This situation occurs only when n = 1, which has been 
excluded from the very beginning (see Figure 1). 

(ii) This circumference lies inside the triangle and all a ' s  are positive. 
In this situation n2/3 <--OL 2~ n2/2 (see Figure 2) and the universe expands 
in all directions. 

(iii) The circumference cuts the triangle at six points. The part of  the 
circle inside the triangle corresponds to case (ii), while for the rest of the 
circle we have two positive and one negative 6, so that the universe expands 
in two directions and contracts in the third. In this situation n2/2<-otE<-- 
n ( 4 - n ) / 3  (see Figure 3). 

At this point, some remarks are in order. The value of n is fixed through 
the equation of  state/3 =/3(p) and the relation between the components of 
the "vector"  et. Thus, for instance, for a traceless energy-momentum tensor, 
Ot 2 ~  n ( 2 - n ) .  Further specifying the model to be isotropic, we obtain 
n =3 /2 ,  corresponding to a radiation-dominated Friedmanian behavior. 
Vacuum solutions demand n = 1 and OL 2= 1, corresponding to Kasner 
behavior. 

A second and important remark: As will be transparent later, we shall 
be concerned with very small time scales, of the order of Planck's time. 
Thus, due to the fact that the matter typical relaxation time is orders of 
magnitude larger than this, matter will only start probing spacetime 
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inhomogeneities much later. This means that sufficiently close to the singu- 
larity we should have T O ~ 0. Thus, recalling that the trace of the second 
fundamental  form does not depend on spatial coordinates [see equation 
(13)], sufficiently close to the singularity [see equation (9)] 

X~j ~ 0 (29) 

3. THE ENTROPY BOUND AND THE COMOVING OBSERVER 

The entropy bound (EB) refers to a closed system whose energy, 
entropy, and largest linear dimension meanings are, in most applications, 
straightforward. However, when dealing with a system like the universe, a 
critical application of  the EB is more subtle and demands some wariness. 
Following Bekenstein's paper, the EB is to be applied to the region limited 
by the obsever's particle horizon, the one the observer is causally connected 
to. Thus, the "system's linear dimension" is to be understood as the proper  
radius R of  the 3-sphere that encloses the particle horizon, while the 
corresponding energy E and entropy S are to be computed on a spacelike 
hypersurface within the PH. Since the above three parameters are functions 
of  to, the observer's comoving time, we state the EB in the form 

S(to) hc 
f( t0) - -~ 1 (30) 

2 ~-R (to) E (to) 

In order to find out where the particle horizon lies, it is convenient to 
move to the principal direction coordinate system (yi), the one where the 
metric (3) is locally diagonal 

diag h~j = (a  2, b 2, c 2) (31) 

In this coordinate system, (29) is equivalent to 

00~ 1 00/2 00/3 
Oyl - Oy2 - ~y3 ~" 0 (32) 

The light cone hypersurface is given by ds z= 0 or, equivalently, by 

t2%(dy1~ 2 t2%(dY3~2=l (33) 
\ - ~  / + t2% + \ at ] 

The solution is a null hypersurface with parametric equation 

t (o1-%) _ t ( l - ~ l  ) 
ylh(t, X) ----- COS 0 

1 - -a l  
t ( l - a z )  __ t (1-a2 ) 

y~(t, x) --- sin 0 cos & 
1-c~2 

t(o1-%) _ t(1-ce3 ) 
y3h(t, X) = sin 0 sin ~b 

1 - o~ 3 
(34) 



428 Sehiffer 

The particle horizon is given by the intersection of (34) with the 
spacelike hypersurface t = 0. The corresponding circumscribing 3-sphere 
proper  radius at time to is 

R = max(R~) 

I f  ~ f :h  to (35) Rih= ds = t ~' dYi = 1 - ai 

Due to the facts that (35) is performed in the direction yi (y~ = 0) and that 
a i does not depend on y~ [see equation (32)], the a ' s  are to be evaluated 
at y = 0 (henceforth the t~'s are to be understood as constants). 

As already discussed, close to the singularity we should have T ~ ~ 0, 
so that the entropy current s ~" is nearly conserved (Misner et al., 1973) and, 
consequently, an approximate total entropy may be defined 

S( t) ~ f~ s ~ dE,~ (36) 

Had we knownsome microscopic information concerning the universe 
matter content, the calculation of the entropy would be straightforward. 
However, since we are only concerned with the peak value of  S/E,  the lack 
of  such information can be overcome by resorting to the expedient of 
rephrasing the EB in terms of  the entropy ;~ matter would have if it were 
composed of  thermal radiation. This is because, within a given energy budget, 
matter entropy is bounded from above by that of massless quanta (rest mass 
reduces the available phase space) in a thermal state. Accordingly, 

S 0=40ll/4p3/4 (37) 

where is the Stefan-Boltzmann constant. The corresponding energy is 

E(t)  = f~ T~ dE n (38) 

In order to perform these integrations, we must specify the hypersurface 
Y~. For the purpose of  evaluating S, the surface considered is irrelevant, 
since equation (36) is invariant under deformations of ~. The same is not 
true for the energy E(t).  It decreases as this surface is deformed toward 
the future (Bekenstein, 1989). Since we are concerned with the point where 
the ratio S / E  peaks, we shall deform E toward the future until it coincides 
with the null hypersurface (34). By virtue of  (15), the volume element reads 

dZo = t" dy 1 dy 2 dy 3 (39) 
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Switching to radial coordinates t, 0, ~b and defining a new time para- 
meter r = t/to, we perform the angular integrations, and integrate by parts 
in ~', obtaining 

with 

.~_S = 8 (  o',JT ~1/4 ,~*, ).n +3/2 A ]~( ).- ~ tl/2 J1 b ~Jt kb] 

I(~') = (1 - ~'(1-~'))(1 - ~'(~-~2))(1 - ~ (1-~ (40) 

where ~"= t'/to is a cutoff time parameter corresponding to the deepest 
distance the observer may see in the sky (~"=0 corresponds to objects 
which are close to the particle horizon and are very faint) (Bekenstein, 1989). 

Since we are concerned here with the peak of  S/E, one should evaluate 
this function at its maximum, which occurs as ~"-+ 1, namely 

lim ~+' ~n--3/2 dI(r 1 
, ,+ ,  dt( ) - 

Therefore 

E 3 t~ (41) 

This is very much the same result we would have obtained had we divided 
the entropy and the energy densities. Putting this result together with the 
calculation of  the particle horizon (35) allows us to evaluate f(to), 

4 ( O'TT ) 1 / 4 (  ~ 1/2 
fCto) = ~ (1 - o l i ) N  1/4 - -  s (42) 

n 2 _ OL2 \/O]1 

Here a slight generalization of  (30) was considered in order to accommodate 
N different species of  particles, t, = (hG/cS) ~/2 is Planck's time, and it is 
understood that the Stefan-Boltzmann constant is expressed in natural units 
c = h = 1, i.e., o-= ~r2/60. 

Due to the conditions we imposed on the universe matter content, 
1 / (nZ-~t  2 ) -  3 / 2 n 2 -  >3 [see equations (27) and (28)]. As will be shown in 
Section 4, the present approach is only valid as long as ai-< (3 n - 1)/6. Thus, 

f ( t o ) > I  (SN~I/4(LP~ I12 (43) 
18 \ 5 r  \to/ 

For N in the range of  102-104 species of  elementary particles, the numerical 
factor is of  order one, showing that the EB is violated whenever the observer 
approaches the singularity on a time scale of  the order of  Planck's time. 
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4. B L A C K - H O L E  S I N G U L A R I T I E S  

Since black-hole interiors may be mapped  into cosmological models,  we 
may apply the above p roof  also to black-hole singularities. The easiest 
example one may work out is the Schwarzschild solution, whose metric 
near the singularity reads 

ds 2 = 2m_m dt 2 r__f_ dr2+ r2 d~.12 (44) 
r 2rn 

Inside the horizon, space and time coordinates interchange their roles, 
making natural  the redefinitions of  time T = r3/2(2/9M)2 and space x = t. 
In the new coordinates the above line element reads 

d s 2 = - d T 2  + T -2/3 dx2 + T 4/3 d f l  2 (45) 

which is a particular case of  a Kantowski-Sachs  cosmological model  
(Kantowski and Sachs, 1966; Vajk and Elgroth, 1966). This metric is a 
solution of Einstein's vacuum equations and, according to the previous 
discussion, corresponds to n = 1. We wish to apply the above ideas to this 
spacetime. For this end, we perturb this metric, introducing some "test 
mat ter"  in the form of  radiation. Preserving the Kantowski-Sachs  form 
d e m a n d s  r 2 = 6 a  3 and also that n + 1+ e, with e << 1. Since radiation 
corresponds to a traceless energy-momentum tensor, a 2 = n ' ( 2 -  n') and 

( ~  + 8 ~ ) 2  = (o/1 q- ao/1) 2 q- 2(o/2 -{- ao/2) 2 = 1 - e 2 

(o/1 + ao/,) + 2(o/2+ 6o/2) = l + e  

After substituting 0/1 =-2/3 and a2 = 4/3, we obtain up to the first order 
in e 

6al = 24 

3a2 = - e / 2  (46) 

Therefore,  the perturbed metric reads 

ds2: -dT2+[-4 -~]2 /3T- (2 -6e ) /3dx2+[~]2 /3T(8 -3~) /6d~"~2  (47) 

The main ingredients for the evaluation o f f ( to )  are the energy and entropy 
densities 

E 
p -- 4~T2 (48) 

0.1/4 E3/4 

S -- 3(47r)3/4 T3/2 (49) 
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and the particle horizon proper  distance 

3T  
n = - -  (50) 

4 - 3 e  

which allow us to evaluate f ( t ) ,  

f (  t) ~2rre,/-------- q (51) 

or, equivalently, in terms of  the original coordinate r, 

F(r).-~ 9 M'|LP] 3 ' 4 -  - (52) 
4"rr81/4 M l_ r j 

showing that violation of the EB necessarily occurs for an observer 
sufficiently close to the singularity. 

5. T H E  T H R E E - C U R V A T U R E  F I N I T E N E S S  A S S U M P T I O N  

One of  the main assumption in the previous sections was that the 
three-curvature is always well behaved near  the singularity. Is this always 
true and, if not, how does it change our results? 

In order to delve into this question, we shall compare  the three-geometry 
Ricci tensor, 

3R~ = A 2 a 4 -  ( ~ b  2 - /,C2) 2 

2 ( abc ) 2 

3Rmm _____ ~ 264-  (aa  2 - vc2) 2 
2(abc) 2 (53) 

7j2c 4 "  (aa  2 - / & b 2 )  2 
3Rnn = 

2(abc) 2 

with the matter  energy density, which is assumed to behave ultrarelativisti- 
cally near the singularity, 

=-P (54) 
P 3 

Under  the hypothesis that T ~ ~ 0, the divergence of  the energy-momentum 
tensor reads 

T;~ ~ Too .  po -v~. + F ~  T OO (55) ~ ; 0  - -  at ~ ,  . t  

The Christoffel symbols in a synchronous frame are 

i i i 
F ~  Foj =Xj ,  F ,o=X (56) 
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so that the above divergence reads 

-•+•x -~0 (57) 
3 

Due to equation (13)--a  consequence of the strong energy condi t ion--we 
conclude that 

19 ~ t - 2 n l 3  (58) 

Comparison of (53) with (58) shows that two possibilities may occur: 
1. The three-curvature is either zero or small as compared with the 

other terms, This happens whenever (a) the parameters A, /z, to vanish, 
corresponding to flat models (Bianchi I); (b) the parameters A, tz, v do not 
vanish and the three o ' s  are positive and lie inside the stabil i ty  triangle 
(ST), defined as the intersection of (15) with the three planes ai = (3n - 1)/6 
(see Figure 4). In this situation, the three-curvature behaves as 

a4+  b4+ c 4 t 4~,+ t4%+ t4ct3 
3R ~ <<< t - 2 n / 3  ~ matter  

(abc)  2 t 2" 

and may be neglected. 
2. The point which represents the solution lies outside the stability 

triangle. In this situation, matter backreaction to the geometry is irrelevant. 

l i  1 

~3 n 
,t 

/ '4 \ 

I I  2 

Fig. 4 



Thermodynamics and Cosmological Singularities 433 

This is the standard chaotic behavior (Misner, 1969; Belinsky and Khalat- 
nikov, 1969). In this scenario (Landau and Lifshitz, 1970), the gravitational 
field undergoes transitions between epochs of Kasnerian behavior where 
the contracting and expanding axes interchange their roles. For any of these 
epochs the a ' s  may be parametrized as follows: 

- u  l + u  u ( l + u )  
- a 3  - u 2 ( 5 9 )  

~ I + U + U  2 '  a 2 - 1 + u + u 2 "  l + u +  

As we move toward the singularity, a given Kasner epoch is determined by 
the preceding one through the relation Un+l = un - 1. Moreover, the number 
of  such transitions becomes infinite as the singularity is approached. Thus, 
for each epoch, similar conclusions as before would follow if it were not 
for the following circumstance. After very many transitions, necessarily 
0 <  u<< 1 will occur. Whenever this happens, a new era with u '=  1 /u  (very 
large) starts (these functions are invariant under the replacement u-+ 1 / u )  
giving oe2 ~ - a l  ~ 0 and a3 ~ 1. For such a configuration, the particle horizon 
coordinate behaves as Xh ~ Iln t[, apparently threatening its very existence 
(for arbitrarily small times). Such a dangerous situation would spoil all the 
argument based on the EB, for which the particle horizon existence is 
pivotal. The resolution of this problem lies in the fact that, whenever the 
gravitational field enters into this configuration, Einstein's equations will 
drive away from this regime before the singularity is reached. To see 
explicitly how this happens, let ~: be a time parameter such that ~:o >> 1 
corresponds to the instant when the system enters into this regime, ~ =  1 
when it leaves it, and ~ = 0 the moment the singularity is reached (Belinsky 
et al., 1970), 

['2ao -0o) ]  ~: = ~:o exp [--~-o ( 0 (60) 

where 0 is a time parameter defined through 

abc dt = dO (61) 

Inserting these parameters into Einstein's equations, one obtains for this era 

ab - (62) 

Next, we calculate the particle horizon proper distance, 

f ,  1 dt 
R(~:) = c(~:) Jo  d e c -  - ~  (63) 
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However, from (60)-(62) it follows that 

c- ~ dt dO 1 

leading to the exact expression 

c(~)~ 
R(~:) - (64) 

2 

In the asymptotic region ~ >> 1, the metric coefficients read (Belinsky et al., 
1970) 

b} = ao ~/-fo [1 •  sin(st- s%) ] 

C = C o e -Aa(e~ (65) 

where A is some constant. We shall now adopt the strategy of overestimating 
the particle horizon by assuming this jeopardizing behavior to persist down 
to the singularity. Thus, 

R ( ~ )  < ~  c O e -A2(e~ (66) 

On the other hand, adopting an equation of state p = yp and assuming 
matter to 6e comoving, energy conservation leads to 

1 ~,_~. [ ~70 1 "/+ 1 eaZ(,o_e)(y+l) 
P~(abc) ~'+' L~-.J (67) 

Putting all these pieces together, we estimate the function f (s  ~) under the 
hypothesis that S/E peaks for thermal radiation [see equation (37)] 

~lS 2 (o'~l/4>( ~(Y--a)/4e_A2(y_3,(~o_,)/4 (68) 
f ( ( ) - 2 ~ r E ~ - 3 r r R  \ p /  \~ , l  

On causality grounds, y<-1 and f ( r  1 as the singularity is approached 
(so-+ 0), making transparent the pivotal role causality plays for the sort of 
argument we are considering in this paper. Thus, we have succeeded in 
showing that even in the chaotic scenario, the existence of cosmological 
singularities is ruled out by the entropy bound. 

6. SUMMARY AND CONCLUSIONS 

The keynote of this paper was to regard the entropy bound as a physical 
law which supplements the second law of thermodynamics and to apply it 
in the cosmological context. Since this law refers to closed systems, we 
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applied it to the spacetime region an observer is causally connected to--his 
particle horizon interior. This was accomplished without making reference 
either to any particular spacetime model nor to any microscopic description 
of the matter that fills it. Summarizing our approach, in analogy with 
Belinsky et al., we expanded the metric around a timelike singularity and 
assumed quite general and reasonable conditions concerning the nature of 
the matter content, namely (i) causality and the strong energy condition 
hold, and (ii) for a given energy density, the matter entropy is always 
overestimated by the corresponding radiation in thermal equilibrium. Under 
these assumptions and the hypothesis that the Ricci tensor for spatial 
sections is always finite, with the aid of Einstein's equation we succeeded 
in calculating the matter behavior, in constraining the range of the param- 
eters that govern this asymptotic metric, and in calculating the particle 
horizon proper radius near the singularity. 

In light of these results, we showed that the existence of a cosmological 
singularity is inconsistent with thermodynamics; the entropy bound is 
violated as the singularity is approached. This violation was shown to occur 
at time scales of the order of Planck's time, even under the ugly conditions 
of the chaotic cosmology scenario. This result bears witness to the intuitive 
feeling that near spacetime singularities, general relativity should be 
replaced by a quantum theory of gravity. 

The prime object of this investigation was to deal with cosmological 
singularities. However, the present results seem to be correct for any timelike 
singularity in a globally hyperbolic spacetime; witness the Schwarzschild 
solution which has been worked out explicitly in Section 4. Had we con- 
sidered for this problem a coordinate patch which extends analytically 
beyond the Schwarzschild event horizon, then, the function f(r) could also 
be analytically extended to this region. Having in mind the structure of 
equation (51), and on dimensional grounds, this function would have to 
be the product of Mp/M by a monotonically increasing function g(Ip/r). 
Thus, even for a distant observer (in the sense that g is small), violation of 
the entropy bound would occur for black holes which are much lighter than 
a Planck mass. 

As this manuscript was being written, L. Grishchuc pointed out a nice 
interpretation for our result. For a gas of photons at temperature T and 
confined in a box of radius R, S / E =  T -1, while the typical photon 
wavelength is ~ ~ T -1. Thus, the entropy bound (1) may be intuitively 
understood as the condition that the quantum wavelength should be smaller 
than the size of the confining box. Enforcing the EB in the context of 
cosmology, amounts to requiring that the quantum never extends beyond 
the particle horizon. (If this were not the case, we could envisage a gedanken 
experiment where the collapse of this quantum wave function is used to 
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convey  i n f o r m a t i o n  be tween  causa l ly  d i s c o n n e c t e d  regions.)  As the  s ingular -  
i ty is a p p r o a c h e d ,  b o t h  the  par t i c le  ho r i zon  a n d  the q u a n t u m  wave leng th  
shr ink,  bu t  s ince the  fo rmer  does  it faster ,  sufficiently close to the  s ingular i ty  
any q u a m a  will  inev i tab ly  fal l  ou t s ide  this  hor izon ,  c o r r e s p o n d i n g  to the  
v io l a t ion  o f  the  en t ropy  b o u n d .  
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